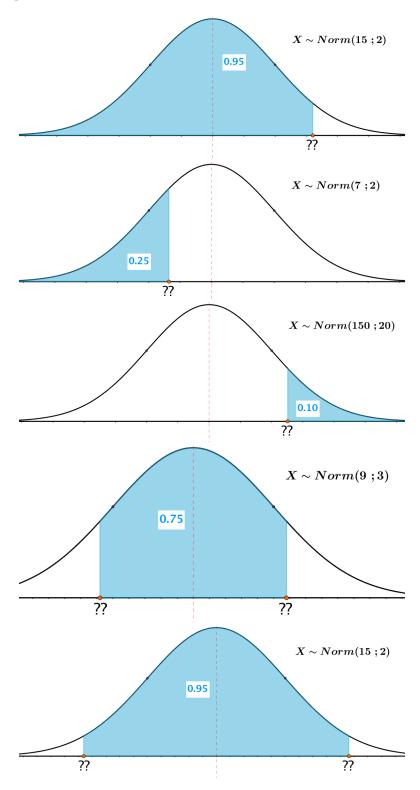

TD 05 - Lois normales

Les objectifs de cette fiche

- ☑ Connaitre l'allure d'une distribution normale et le lien avec ses paramètres (espérance et écart-type)
- \triangledown Effectuer des lectures (lecture directe et lecture inverse) dans la table de la loi normale $\mathcal{N}(0;1)$
- ☑ Utiliser le théorème de centrage réduction
- ☑ Calculer la proportion d'une population normale répondant à certains critères (aire sous la courbe)
- ☑ Retrouver les valeurs en abscisse d'une portion de la surface sous une courbe de Gauss dont l'aire est connue.


Exercice 1 Lecture de la table

On considère une v.a. X suivant la loi normale centrée-réduite.

- 1. Déterminer les probabilités suivantes : $P(X \le 0.43)$, $P(X \ge 0.14)$, P(X < -1.22) et $P(1 \le X \le 1.6)$.
- 2. Trouver le nombre réel h tel que $P(X \le h) = 0.75$
- 3. Trouver le nombre réel h tel que $P(X \leqslant -h) = 0,15$

Exercice 2

Déterminer dans chaque cas la valeur du nombre inconnu??.

Exercice 3 Quotient Intellectuel...

Pour cet exercice, il sera sans doute utile de se renseigner sur la façon d'étalonner un test de QI!

- 1. Représenter sommairement la distribution statistique des individus selon leur QI.
- 2. Déterminer la probabilité pour qu'un individu choisi au hasard ait un QI supérieur à 130.
- 3. Quelle proportion des individus ont un QI compris entre 85 et 115?
- 4. Quelle proportion des individus ont un QI compris entre 70 et 130?
- 5. Le champion d'échecs Garry Kasparov possède un QI de 190... Quel pourcentage de la population possède un QI plus élevé que lui ?
- 6. Pour faire partie des 10% les plus "intelligents", quel QI faut-il avoir?

Exercice 4

On s'intéresse à la taille des individus d'une population à l'échelle d'un pays. On suppose cette population normale, et on suppose que la taille moyenne de cette population est de 170 cm, avec un écart-type de 10 cm.

- 1. Représenter brièvement (dessin "vite fait... bien fait") la distribution des individus de cette population selon leur taille.
- 2. Lecture directe
 - Déterminer la proportion de la population mesurant moins d'1m75.
 - Quelle proportion de la population mesure plus d'1m50?
 - Quelle proportion de la population mesure entre d'1m60 et 1m80?
- 3. lecture inverse
 - Quelle est la taille des 85% des individus les plus petits?
 - Quelle est la taille des 20% des individus les plus petits?
 - Quelle taille doit faire un individu pour faire partie des 5% les plus grands?
 - On souhaite conserver les individus ayant une taille proche de la moyenne. Plus précisément, on souhaite conserver 80% des individus autour de cette taille moyenne. Quelle sera la taille des individus retenus?

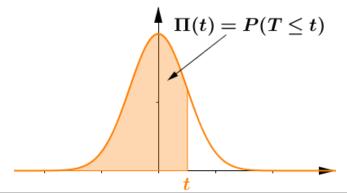
Exercice 5

Le compte de trésorerie d'une PME, exprimé en euros, est modélisé par une variable aléatoire suivant la loi normale d'espérance 7 000 et d'écart-type 3 000.

- 1. Quelle est la probabilité que la PME ait une trésorerie supérieure à 10 500€?
- 2. Déterminer le risque d'une rupture de trésorerie.

Exercice 6

Un fabricant d'ampoules garantit ses produits contre une usure prématurée. La durée de vie d'une ampoule, en heure, est modélisée par une variable aléatoire $X \sim \mathcal{N}$ (5 000 ; 300). On choisit au hasard une ampoule au sein de la production.


- 1. Quelle est la probabilité que l'ampoule dure plus de 5 600 heures ?
- 2. Quelle est la probabilité que l'ampoule dure entre de 4 900 et 5 100 heures?
- 3. Le fabriquant ne souhaite pas rembourser plus de 3% de ses clients. Sur quelle durée de vie minimale peut-il s'engager?

Exercice 7

Un site de pari en ligne s'intéresse à la mise dépensée par ses abonnés quotidiennement. On note X la dépense quotidienne en \in d'un abonné choisi au hasard. On suppose que cette variable aléatoire suit une loi normale d'espérance 9 et d'écart-type $2,5: X \sim \mathcal{N}or(9; 2,5)$

- 1. Représenter sommairement la distribution de probabilité de *X* (dessin "vite fait bien fait").
- 2. Calculer $P(X \le 12)$ et interpréter.
- 3. Calculer la probabilité qu'un abonné mise quotidiennement plus de 8€.
- 4. On s'intéresse ici aux 20% des abonnés les plus dépensiers. Quelle est la dépense quotidienne minimale d'un tel abonné ? (*Conseil : faire un dessin!*)

ANNEXE: Loi normale

t	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986