Multiples, diviseurs et nombres premiers

Table des matières

1	Multiples et diviseurs dans $\mathbb Z$	1
2	Nombres premiers	2
3	Nombres pairs, nombres impairs	2

1 Multiples et diviseurs dans \mathbb{Z}

1.1 Rappels : Ensembles $\mathbb N$ et $\mathbb Z$

Définition 1.

- L'ensemble des entiers **naturels** $\{0, 1, 2, \ldots\}$ est noté \mathbb{N} .
- L'ensemble des entiers relatifs $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$ est noté \mathbb{Z} .

Propriété 1. La somme, la différence et le produit de deux entiers relatifs sont des entiers relatifs.

Propriété 2. La division euclidienne de deux entiers relatifs donne des entiers relatifs :

Pour tout entier a et b, avec b non nul il existe un unique couple d'entiers relatifs q et r tels que :

$$a = b \times q + r \text{ avec } 0 \le r < |b|$$

q est appelé **quotient** et r **reste** de la division.

Exemple

- $37 = 5 \times 7 + 2$.
 - La division euclidienne de 37 par 5 a pour quotient 4 et reste 2. On a bien $0 \le 2 < 5$.
- $37 = 5 \times 4 + 17$.
 - 4 et 17 ne conviennent pas car 17 est **plus grand** que 5.

1.2 Multiples et diviseurs dans \mathbb{Z}

Définition 2. Soient deux entiers relatifs n et p, s'il existe un entier q tel que $n = p \times q$, c'est-à-dire si le reste de la division euclidienne de n par p est nul, on dit que :

- p est un diviseur de n ou que n est divisible par p.
- n est un multiple de p.

Exemple. $12 = 4 \times 3 : 12$ est un multiple de 4, 4 divise 12.

Remarque

- Tout nombre entier relatif non nul a au moins deux diviseurs : 1 et lui même.
- Tout nombre entier relatif admet une infinité de multiples. Les mutiples de n sont les nombres qui s'écrivent $k \times n$ où $k \in \mathbb{Z}$.

Propriété 3. On considère trois entiers relatifs a, n et p.

Si les entiers n et p sont des multiples de a alors la somme n+p, la différence n-p et le produit $n \times p$ le sont aussi.

Exemple. 36 et 90 sont multiples de 9 donc 126 = 90 + 36 l'est aussi. En effet $126 = 9 \times 14$. Remarquons aussi qu'on a $36 = 9 \times 4$, $90 = 9 \times 10$ et $126 = 9 \times (4 + 10)$.

Démonstration. Pour la somme

n est multiple de a donc il existe $k \in \mathbb{Z}$ tel que $n = a \times k$.

p est multiple de a donc il existe $l \in \mathbb{Z}$ tel que $n = a \times l$.

On en déduit que $n+p=a\times k+a\times l=a\times (k+l)$. Autrement dit, la somme n+p est multiple de a.

2 Nombres premiers

Définition 3. Nombre premier

Un nombre entier $naturel\ p$ est un **nombre premier** s'il n'admet que deux diviseurs positifs distincts, 1 et lui même.

Exemple. 2, 3, 5, 7 et 11 sont des nombres premiers.

0, 1, 4 et 6 ne sont pas des nombres permiers.

0 admet une infinité de diviseurs, 1 n'en a qu'un, $4 = 2 \times 2$ donc 4 a plus de deux diviseurs, $6 = 2 \times 3$ donc 6 a plus de deux diviseurs.

Propriété 4. Tous les nombres entiers naturels n qui peuvent s'écrire $n = p \times q$ avec p > 1 et q > 1 ne sont pas des nombres premiers.

Remarque. Chaque nombre entier naturel s'écrit de façon unique (à l'ordre près) comme un produit de nombres premiers. C'est le *théorème fondamental de l'arithmétique*.

Par exemple: $84 = 2 \times 2 \times 3 \times 7$

3 Nombres pairs, nombres impairs

3.1 Définitions

Définition 4. et propriété

On considère un entier naturel n.

- Si n est divisible par 2, on dit que n est **pair**. Il existe alors un entier p tel que $n = 2 \times p$
- Sinon, on dit que n est **impair**. Il existe alors un entier p tel que $n = 2 \times p + 1$

Exemple. 38 est un nombre pair car $38 = 2 \times 19$.

17 est un nombre impair et $17 = 2 \times 8 + 1$.

Démonstration. On considère un entier naturel n. On effectue la division euclidienne de n par 2. Il existe donc un entier p (quotient) et un entier r (reste) tels quel :

$$n = 2 \times p + r$$
 avec $0 \le r < 2$.

r est un entier naturel qui vérifie $0 \le r < 2$ donc r = 0 ou r = 1.

Si r = 0, alors n est pair et $n = 2 \times p$,

sinon n est impair et $n = 2 \times p + 1$.

Propriété 5. Critère de parité

Un entier naturel n est pair si son chiffre des unités est pair, c'est-à-dire égal à 0, 2, 4, 6 ou 8.

3.2 Parité et somme d'entiers

Propriété 6.

- La somme de deux entiers pairs est un entier pair.
- La somme de deux entiers impairs est un entier pair.
- La somme d'un entier pair et d'un entier impair est un entier impair.

Démonstration.

• Pour deux entiers pairs.

Si n et m sont pairs, il existe p et q tels quel $n = 2 \times p$ et $m = 2 \times q$.

On a alors $n + m = 2 \times p + 2 \times q$ donc $n + m = 2 \times (p + q)$ donc n + m est pair.

• Pour deux entiers impairs.

Si n et m sont impairs, il existe p et q tels quel $n=2\times p+1$ et $m=2\times q+1$.

On a alors $n+m=2\times p+1+2\times q+1$ donc $n+m=2\times (p+q)+2=2\times (p+q+1)$ donc n+m est pair.

2

3.3 Parité d'un carré

Propriété 7. On considère un entier naturel n.

- Si n est pair alors son carré n^2 est pair.
- Si n est impair alors son carré n^2 est impair.

Exemple.

- 12 est pair et 12² = 144 aussi.
 9 est impair et 9² = 81 aussi.

 $D\acute{e}monstration$. On considère un entier relatif n.

- Si n est pair alors on peut écrire $n=2\times k$ avec $k\in\mathbb{Z}$. Donc $n^2 = (2 \times k)^2 = (2k) \times (2k) = 2 \times (2k^2)$. Donc n^2 est pair.
- Si n est impair alors on peut écrire $n = 2 \times k + 1$ avec $k \in \mathbb{Z}$. Donc $n^2 = (2k+1)^2 = (2k+1) \times (2k+1) = (2k)^2 + 2k + 2k + 1 = 2 \times (2k^2 + k + k) + 1$ donc n^2 est On peut aussi employer l'identité remarquable $(2k+1)^2 = 4k^2 + 4k + 1$ et obtenir le même résultat.

Propriété 8. La réciproque de ce théorème est vraie :

- Si le carré n² est pair alors n est pair,
 Si le carré n² est impair alors n est impair.